Útmutató kezdőknek az AI adatgyűjtéshez

Az AI adatgyűjtő vállalat kiválasztása AI/ML projektjéhez

Bevezetés

Ai képzési adatok A mesterséges intelligencia arról szól, hogy gépeket használnak az emberek életének és életmódjának felemelésére azáltal, hogy érdekessé és leegyszerűsítik hétköznapi életüket. Az AI-nak soha nem kellene uralkodónak lennie, hanem kiegészítőnek, amely az emberekkel együtt dolgozik, hogy megoldja a valószínűtlen dolgokat, és előkészítse az utat a kollektív evolúció előtt.

Jelenleg a helyes úton haladunk, és az AI segítségével jelentős áttörések történtek az iparágakban. Ha például az egészségügyet vesszük, akkor a gépi tanulási modellekkel kísért mesterséges intelligencia rendszerek segítenek a szakértőknek abban, hogy jobban megértsék a rákot, és kezelési módszereket találjanak ki rá. A neurológiai rendellenességeket és aggodalmakat, például a PTSD-t, az AI segítségével kezelik. Az MI-alapú klinikai vizsgálatoknak és szimulációknak köszönhetően gyors ütemben fejlesztik a vakcinákat.

Adatgyűjtés Bg_Tablet
Olvassa el az AI adatgyűjtést, vagy PDF verzió letöltése.

Tartalomjegyzék

  1. Bevezetés
  2. Mi az AI adatgyűjtés?
  3. Az AI képzési adatok típusai a gépi tanulásban
    1. Szöveges adatok
    2. Audio adatok
    3. Képadatok
    4. Videó adatok
  4. Hogyan gyűjtsünk adatokat egy gépi tanuláshoz?
    1. Ingyenes források
    2. Belső erőforrások
    3. Fizetett források
  5. Hogyan befolyásolják a rossz adatok a mesterséges intelligencia ambícióit?
    1. Rossz adatok – mi ez?
    2. AI képzési adatszolgáltatók a mentésben
  6. Tényezők, amelyeket figyelembe kell venni az adatgyűjtési projekt hatékony költségvetésének kidolgozásakor
    1. A szükséges adatmennyiség
    2. Adatárazási stratégia
    3. Az Ön beszerzési stratégiái
  7. Megtakarít a kiadásokon a házon belüli adatgyűjtéssel?
    1. Drága a házon belüli adatgyűjtés?
  8. A teljes körű AI-adatgyűjtési szolgáltató előnyei
  9. Hogyan válasszuk ki a megfelelő AI-adatgyűjtő vállalatot
    1. A mintaadatkészlet lakmusz teszt
    2. Ellenőrizze, hogy megfelelnek-e
    3. Kérdezzen minőségbiztosítási folyamataikról
    4. Az adattorzítás kezelése
    5. Méretezhetőek?
  10. Következtetés

Nem csak az egészségügy, minden iparág vagy szegmens, amelyet az AI érint, forradalmasítás alatt áll. Az autonóm járművek, az intelligens kisboltok, a viselhető eszközök, mint a FitBit és még az okostelefonok kamerái is képesek jobb képeket készíteni arcunkról mesterséges intelligencia segítségével.

Az AI-térben zajló újításoknak köszönhetően a vállalatok különféle felhasználási esetekkel és megoldásokkal szállnak be a spektrumba. Emiatt a globális mesterségesintelligencia-piac várhatóan 267 végére eléri a 2027 milliárd dolláros piaci értéket. Emellett a vállalkozások mintegy 37%-a már most is alkalmaz mesterségesintelligencia-megoldásokat folyamataiba és termékeibe.

Még érdekesebb, hogy a ma használt termékek és szolgáltatások közel 77%-át mesterséges intelligencia működteti. Miközben a technológiai koncepció jelentősen terjed a vertikálisok között, hogyan tudnak a vállalkozások lehetetlent tenni az AI-val?

Ai adatgyűjtés

Ai adatgyűjtés Hogyan jósolják meg pontosan az olyan egyszerű eszközök, mint az óra, az emberek szívrohamát? Hogyan lehetséges, hogy azok az autók és autók, amelyekben mindig is kellett sofőr, hirtelen kevesebbet vezetnek az utakon?

Hogyan hitetik el velünk a chatbotok, hogy egy másik emberrel beszélünk a másik oldalon?

Ha minden kérdésre megfigyeli a választ, az egyetlen elemre csapódik le – az ADATOKRA. Az adatok az összes mesterséges intelligencia-specifikus művelet és folyamat középpontjában állnak. Ezek az adatok segítenek a gépeknek megérteni a fogalmakat, feldolgozni a bemeneteket és pontos eredményeket szolgáltatni.

Az összes rendelkezésre álló fő mesterséges intelligencia-megoldás egy olyan kulcsfontosságú folyamat terméke, amelyet adatgyűjtésnek vagy adatgyűjtésnek vagy mesterséges intelligencia képzési adatoknak nevezünk.

Ez a kiterjedt útmutató arról szól, hogy segítsen megérteni, mi ez, és miért fontos.

Mi az AI adatgyűjtés?

A gépeknek nincs saját eszük. Ennek az elvont fogalomnak a hiánya nélkülözi azokat a véleményeket, tényeket és képességeket, mint az érvelés, a megismerés és egyebek. Ezek csak mozdíthatatlan dobozok vagy eszközök, amelyek helyet foglalnak el. Ahhoz, hogy ezeket hatékony médiumokká alakítsa, algoritmusokra és még fontosabb adatokra van szüksége.

Ai adatgyűjtés A kifejlesztett algoritmusoknak szüksége van valamire, amin dolgozni és feldolgozni kell, és ez a valami releváns, kontextuális és friss adat. Az ilyen adatok gyűjtésének folyamatát a gépek számára a szándékolt célok teljesítése érdekében AI adatgyűjtésnek nevezik.

Minden egyes mesterséges intelligencia-kompatibilis termék vagy megoldás, amelyet ma használunk, és az általuk kínált eredmények több éves képzés, fejlesztés és optimalizálás eredménye. A navigációs útvonalakat kínáló eszközöktől az olyan összetett rendszerekig, amelyek napokkal előre megjósolják a berendezés meghibásodását, minden egyes entitás évekig tartó mesterséges intelligencia képzésen ment keresztül, hogy pontos eredményeket tudjon nyújtani.

AI adatgyűjtés A mesterséges intelligencia fejlesztési folyamatának elõzetes lépése, amely már a kezdetektõl meghatározza, hogy egy AI-rendszer mennyire hatékony és eredményes. A releváns adatkészletek számtalan forrásból való beszerzésének folyamata segíti az AI-modelleket abban, hogy jobban feldolgozzák a részleteket, és értelmes eredményeket érjenek el.

Az AI képzési adatok típusai a gépi tanulásban

Manapság az AI adatgyűjtés egy gyűjtőfogalom. Az adatok ezen a téren bármit jelenthetnek. Ez lehet szöveg, videofelvétel, kép, hang vagy ezek keveréke. Röviden, bármi, ami hasznos egy gép számára a tanulási és az eredmények optimalizálásának feladatához, az adat. Ha többet szeretne megtudni a különböző típusú adatokról, íme egy gyors lista:

Az adatkészletek származhatnak strukturált vagy strukturálatlan forrásból. Az avatatlanok számára a strukturált adatkészletek azok, amelyeknek kifejezett jelentése és formátuma van. A gépek számára könnyen érthetőek. A strukturálatlanok viszont az adatkészletekben található részletek, amelyek mindenhol megtalálhatók. Nem követnek meghatározott struktúrát vagy formátumot, és emberi beavatkozásra van szükségük ahhoz, hogy értékes ismereteket vonjanak ki az ilyen adatkészletekből.

Szöveges adatok

Az adatok egyik legbőségesebb és legkiemelkedőbb formája. A szöveges adatok adatbázisokból, GPS-navigációs egységekből, táblázatokból, orvosi eszközökből, űrlapokból és egyebekből származó betekintések formájában strukturálhatók. A strukturálatlan szöveg lehetnek felmérések, kézzel írt dokumentumok, szövegképek, e-mail-válaszok, közösségi média megjegyzések és még sok más.

Szöveges adatgyűjtés

Audio adatok

Az audioadatkészletek segítségével a vállalatok jobb chatbotokat és rendszereket fejleszthetnek ki, jobb virtuális asszisztenseket tervezhetnek és így tovább. Segítenek a gépeknek abban is, hogy megértsék az ékezeteket és a kiejtést az egyes kérdések vagy lekérdezések különböző módjaihoz.

Audio adatgyűjtés

Képadatok

A képek egy másik kiemelkedő adatkészlet-típus, amelyet különféle célokra használnak. Az önvezető autóktól és az olyan alkalmazásoktól kezdve, mint a Google Lens, az arcfelismerésig, a képek segítenek a rendszereknek zökkenőmentes megoldások kidolgozásában.

Képes adatgyűjtés

Videó adatok

A videók részletesebb adatkészletek, amelyek segítségével a gépek mélyen megérthetnek valamit. A videó adatkészletek számítógépes látásból, digitális képalkotásból és egyebekből származnak.

Videó adatgyűjtés

Hogyan gyűjtsünk adatokat egy gépi tanuláshoz?

Ai képzési adatok Itt kezdenek kicsit bonyolulttá válni a dolgok. Kezdettől fogva úgy tűnt, hogy egy valós problémára van megoldás a fejedben, tudod, hogy a mesterséges intelligencia lenne az ideális megoldás, és már kifejlesztetted a modelleidet. Most azonban a döntő szakaszban van, amikor el kell kezdenie a mesterséges intelligencia képzési folyamatait. Bőséges mesterséges intelligencia képzési adatra van szüksége ahhoz, hogy modelljei megtanulják a fogalmakat és eredményeket érjenek el. Az eredmények teszteléséhez és az algoritmusok optimalizálásához érvényesítési adatokra is szükség van.

Szóval, honnan szerzi be adatait? Milyen adatokra van szüksége és mennyi? Milyen több forrásból lehet lekérni a releváns adatokat?

A vállalatok felmérik ML modelljeik rést és célját, és felvázolják a releváns adatkészletek forrásának lehetséges módjait. A szükséges adattípus meghatározása megoldja az adatbeszerzéssel kapcsolatos aggodalmak nagy részét. A jobb kép érdekében az adatgyűjtéshez különböző csatornák, utak, források vagy médiumok állnak rendelkezésre:

Ai képzési adatok

Ingyenes források

Ahogy a név is sugallja, ezek olyan források, amelyek ingyenes adatkészleteket kínálnak mesterséges intelligencia képzési célokra. Ingyenes források lehetnek nyilvános fórumok, keresőmotorok, adatbázisok és címtárak a kormányzati portálokig, amelyek az évek során tárolt információk archívumát őrzik.

Ha nem szeretne túl sok erőfeszítést fektetni az ingyenes adatkészletek beszerzésébe, léteznek dedikált webhelyek és portálok, mint például a Kaggle, AWS-források, UCI-adatbázisok és még sok más, amelyek lehetővé teszik a sokféle felfedezést.
kategóriákat, és töltse le ingyenesen a szükséges adatkészleteket.

Belső erőforrások

Bár az ingyenes források kényelmes lehetőségnek tűnnek, számos korlátozás kapcsolódik hozzájuk. Először is, nem lehet mindig biztos abban, hogy megtalálja az igényeinek pontosan megfelelő adatkészleteket. Még ha egyeznek is, az adatkészletek irrelevánsak lehetnek az idővonalak szempontjából.

Ha piaci szegmense viszonylag új vagy feltáratlan, akkor nem lenne sok kategória vagy releváns
adatkészleteket is letölthet. Az előzetes hiányosságok elkerülése érdekében szabad forrásokkal, ott
létezik egy másik adatforrás, amely csatornaként működik relevánsabb és kontextuális adatkészletek létrehozásához.

Ezek az Ön belső forrásai, például CRM-adatbázisok, űrlapok, e-mail-marketing leadek, termék vagy szolgáltatás által meghatározott kapcsolati pontok, felhasználói adatok, hordható eszközökről származó adatok, webhelyadatok, hőtérképek, közösségimédia-betekintések és még sok más. Ezeket a belső erőforrásokat Ön határozza meg, állítja be és karbantartja. Így biztos lehetsz a hitelességében, relevanciájában és újszerűségében.

Fizetett források

Bármilyen hasznosnak is hangzanak, a belső erőforrásoknak is megvannak a maguk része a bonyodalmak és a korlátok. Például a tehetségtárának legnagyobb része az adatkapcsolati pontok optimalizálására összpontosít. Ezenkívül a csapatok és az erőforrások közötti koordinációnak is kifogástalannak kell lennie.

Az ehhez hasonló problémák elkerülése érdekében fizetős forrásokat használ. Ezek olyan szolgáltatások, amelyek a leghasznosabb és legkontextuálisabb adatkészleteket kínálják projektjeihez, és biztosítják, hogy folyamatosan megkapja őket, amikor csak szüksége van rá.

A legtöbbünk első benyomása a fizetős forrásokról vagy adatszolgáltatókról az, hogy drágák. Azonban,
ha kiszámolod, csak hosszú távon olcsók. Kiterjedt hálózataiknak és adatbeszerzési módszereiknek köszönhetően komplex adatkészleteket kaphat AI-projektjeihez, függetlenül attól, hogy mennyire valószínűtlenek.

A három forrás közötti különbségek részletes felvázolása érdekében álljon itt egy részletes táblázat:

Szabad forrásokBelső erőforrásokFizetett források
Az adatkészletek ingyenesen elérhetők.A működési költségektől függően a belső erőforrások ingyenesek is lehetnek.Fizetni kell egy adatszolgáltatónak, hogy a releváns adatkészleteket beszerezze.
Számos ingyenes online forrás érhető el a preferált adatkészletek letöltéséhez.Egyénileg meghatározott adatokat kap az AI képzéshez szükséges igényei szerint.Egyénileg meghatározott adatokat folyamatosan kap, ameddig csak szüksége van rá.
Manuálisan kell dolgoznia az adatkészletek összeállításán, válogatásán, formázásán és annotálásán.Még az adatok érintési pontjait is módosíthatja a szükséges információkat tartalmazó adatkészletek létrehozásához.A szállítóktól származó adatkészletek gépi tanulásra készek. Ez azt jelenti, hogy megjegyzésekkel vannak ellátva, és minőségbiztosítással rendelkeznek.
Legyen óvatos a letöltött adatkészletekre vonatkozó licencelési és megfelelőségi korlátozásokkal kapcsolatban.A belső erőforrások kockázatossá válnak, ha korlátozott ideje van terméke piacra dobására.Meghatározhatja a határidőket, és ennek megfelelően szállíthatja az adatkészleteket.

 

Hogyan befolyásolják a rossz adatok a mesterséges intelligencia ambícióit?

Azért soroltuk fel a három leggyakoribb adatforrást, hogy legyen elképzelése az adatgyűjtésről és -beszerzésről. Ezen a ponton azonban elengedhetetlen annak megértése, hogy az Ön döntése változatlanul eldöntheti az AI-megoldás sorsát.

Hasonlóan ahhoz, hogy a kiváló minőségű mesterséges intelligencia képzési adatok segítségével a modell pontos és időszerű eredményeket érhet el, a rossz képzési adatok is tönkretehetik az AI-modelleket, torzíthatják az eredményeket, torzítást okozhatnak, és egyéb nemkívánatos következményekkel járhatnak.

De miért történik ez? Nem kellene semmilyen adatnak tanítania és optimalizálnia az AI-modelljét? Őszintén szólva nem. Értsük meg ezt tovább.

Rossz adatok – mi ez?

Rossz adatok Rossz adat minden olyan adat, amely irreleváns, helytelen, hiányos vagy elfogult. A rosszul definiált adatgyűjtési stratégiáknak köszönhetően a legtöbb adattudós és annotációs szakértők kénytelenek rossz adatokon dolgozni.

A különbség a strukturálatlan és a rossz adatok között az, hogy a strukturálatlan adatokba mindenütt betekintést nyerhetünk. De lényegében ettől függetlenül hasznosak lehetnek. További idő eltöltésével az adatkutatók továbbra is képesek lennének releváns információkat kinyerni strukturálatlan adatkészletekből. A rossz adatok esetében azonban nem ez a helyzet. Ezek az adatkészletek nem vagy csak korlátozott mértékben tartalmaznak olyan betekintést vagy információt, amely értékes vagy releváns az AI-projektje vagy annak képzési céljai szempontjából.

Tehát ha az adatkészleteket ingyenes forrásokból szerzi be, vagy lazán kialakított belső adatkapcsolati pontokkal rendelkezik, nagy a valószínűsége annak, hogy rossz adatokat tölt le vagy generál. Amikor a tudósok rossz adatokon dolgoznak, Ön nemcsak emberi órákat veszít, hanem a terméke piacra dobását is szorgalmazza.

Ha még mindig nem világos, hogy a rossz adatok milyen hatással lehetnek ambícióira, íme egy gyors lista:

  • Számtalan órát tölt a rossz adatok beszerzésével, és órákat, erőfeszítéseket és pénzt pazarol erőforrásokra.
  • A rossz adatok jogi problémákat okozhatnak, ha nem veszik észre, és csökkenthetik a mesterséges intelligencia hatékonyságát
    modellek.
  • Ha a rossz adatokra kiképzett terméket élőben viszi át, az befolyásolja a felhasználói élményt
  • A rossz adatok torzíthatják az eredményeket és a következtetéseket, ami további visszahatásokat okozhat.

Tehát, ha arra kíváncsi, hogy van-e megoldás erre, akkor valójában van.

AI képzési adatszolgáltatók a mentésben

Ai képzési adatszolgáltatók a mentéshez Az egyik alapvető megoldás az adatszolgáltató (fizetős források) választása. A mesterséges intelligencia képzési adatszolgáltatói gondoskodnak arról, hogy az Ön által kapott adatok pontosak és relevánsak legyenek, és az adatkészleteket strukturált formában kézbesítik. Nem kell részt vennie a portálról portálra való áttéréssel járó gondokba az adatkészletek keresése során.

Mindössze annyit kell tennie, hogy felveszi az adatokat, és tökéletesre tanítja mesterségesintelligencia-modelljeit. Ennek ellenére biztosak vagyunk benne, hogy a következő kérdése az adatszolgáltatókkal való együttműködés költségeire vonatkozik. Megértjük, hogy néhányan már dolgoznak a mentális költségvetésen, és mi is pontosan errefelé tartunk a következőn.

Tényezők, amelyeket figyelembe kell venni az adatgyűjtési projekt hatékony költségvetésének kidolgozásakor
 

Az AI-képzés szisztematikus megközelítés, ezért a költségvetés-tervezés ennek szerves részévé válik. Az olyan tényezőket, mint a megtérülés, az eredmények pontossága, a képzési módszerek és egyebek figyelembe kell venni, mielőtt hatalmas összeget fektetnénk be az AI fejlesztésébe. Ebben a szakaszban sok projektmenedzser vagy cégtulajdonos tapogatózik. Elhamarkodott döntéseket hoznak, amelyek visszafordíthatatlan változásokat hoznak a termékfejlesztési folyamatukban, és végül több kiadásra kényszerítik őket.

Ez a rész azonban megfelelő betekintést nyújt Önnek. Amikor leülsz dolgozni az AI-képzés költségvetésén, három dolog vagy tényező elkerülhetetlen.

Költségvetés az Ai képzési adataihoz

Nézzük mindegyiket részletesen.

A szükséges adatmennyiség

Mindvégig azt mondtuk, hogy az AI-modell hatékonysága és pontossága attól függ, hogy mennyire képzett. Ez azt jelenti, hogy minél nagyobb az adatkészletek mennyisége, annál több a tanulás. De ez nagyon homályos. A Dimensional Research közzétett egy jelentést, amelyből kiderült, hogy a vállalkozásoknak legalább 100,000 XNUMX mintaadatkészletre van szükségük a mesterséges intelligencia modellek képzéséhez.

100,000 100,000 adatkészlet alatt XNUMX XNUMX minőségi és releváns adatkészletet értünk. Ezeknek az adatkészleteknek rendelkezniük kell az algoritmusokhoz és a gépi tanulási modellekhez szükséges összes alapvető attribútummal, megjegyzéssel és betekintéssel az információk feldolgozásához és a tervezett feladatok végrehajtásához.

Mivel ez egy általános ökölszabály, értsük meg jobban, hogy a szükséges adatok mennyisége egy másik bonyolult tényezőtől is függ, amely az Ön vállalkozása használati esete. Azt is meghatározza, hogy mit szándékozik tenni a termékével vagy megoldásával, hogy mennyi adatra van szüksége. Például egy ajánlómotort építő vállalkozásnak más adatmennyiségi követelményei vannak, mint egy chatbotot építő cégnek.

Adatárazási stratégia

Ha végzett a ténylegesen szükséges adatmennyiség véglegesítésével, legközelebb egy adatárazási stratégián kell dolgoznia. Ez leegyszerűsítve azt jelenti, hogyan fizetne a beszerzett vagy generált adatkészletekért.

Általában ezek a hagyományos árképzési stratégiák, amelyeket a piacon követnek:

AdattípusÁrazási stratégia
Kép KépÁra egyetlen képfájlonként
Videó VideóÁra másodpercenként, percenként, órában vagy egyedi képkockákon
Audio Hang / beszédÁra másodpercenként, percenként vagy óránként
szöveg szövegSzavanként vagy mondatként áron

De várj. Ez megint egy ökölszabály. Az adatkészletek beszerzésének tényleges költsége olyan tényezőktől is függ, mint:

  • Az egyedi piaci szegmens, demográfiai vagy földrajzi terület, ahonnan az adatkészleteket be kell szerezni
  • Az Ön használati esetének bonyolultsága
  • Mennyi adatra van szüksége?
  • Ideje piacra lépni
  • Bármilyen személyre szabott követelmény és így tovább

Ha megfigyeli, tudni fogja, hogy az AI-projekthez szükséges képek tömeges beszerzésének költsége alacsonyabb lehet, de ha túl sok specifikációval rendelkezik, az árak megemelkedhetnek.

Az Ön beszerzési stratégiái

Ez trükkös. Mint láthatta, különböző módokon generálhat vagy forrásolhat adatokat az AI-modellekhez. A józan ész azt diktálja, hogy az ingyenes források a legjobbak, mivel komplikációk nélkül ingyenesen letöltheti a szükséges adatkészleteket.

Jelenleg az is úgy tűnik, hogy a fizetős források túl drágák. De ez az a hely, ahol a bonyodalom rétege hozzáadódik. Ha ingyenes erőforrásokból szerzi be az adatkészleteket, akkor több időt és energiát fordít az adatkészletek tisztítására, a vállalkozásspecifikus formátumba való összeállítására, majd egyenkénti megjegyzéseire. A folyamat során működési költségek merülnek fel.

Fizetős források esetén a fizetés egyszeri, és a gépre kész adatkészleteket is kézhez kapja a kívánt időpontban. A költséghatékonyság itt nagyon szubjektív. Ha úgy érzi, megengedheti magának, hogy időt szánjon ingyenes adatkészletek annotálására, akkor ennek megfelelő költségvetést készíthet. És ha úgy gondolja, hogy a verseny kiélezett, és korlátozott a piacra jutási ideje, hullámzási hatást kelthet a piacon, akkor előnyben kell részesítenie a fizetős forrásokat.

A költségvetés-tervezés lényege a konkrétumok lebontása és az egyes töredékek világos meghatározása. Ez a három tényező útitervként szolgálhat az AI képzési költségvetési folyamatához a jövőben.

Megtakarít a kiadásokon a házon belüli adatgyűjtéssel?

Adatgyűjtés A költségvetés tervezése során megvizsgáltuk, hogy a szabad források hogyan kényszerítik Önt hosszabb távon több kiadásra. Ekkor automatikusan elgondolkozott volna a házon belüli adatgyűjtési folyamat költséghatékonyságán.

Tudjuk, hogy még mindig tétovázik a fizetős forrásokkal kapcsolatban, és ezért ez a rész feloldja ezzel kapcsolatos szkepticizmusát, és rávilágít a házon belüli adatgenerálás rejtett költségeire.

Drága a házon belüli adatgyűjtés?

Igen, ez az!

Nos, itt egy részletes válasz. Költség minden, amit elkölt. Az ingyenes források megvitatása során kiderült, hogy pénzt, időt és erőfeszítést költ a folyamatra. Ez vonatkozik a házon belüli adatgyűjtésre is.

Az adatgyűjtés drága Tekintettel arra, hogy vannak egyénileg meghatározott érintkezési pontjai vagy adatcsatornái, ez nem jelenti azt, hogy meg is lennének gépkész adatkészletek a végén. Az Ön által generált adatok továbbra is többnyire nyersek és strukturálatlanok lesznek. Előfordulhat, hogy az összes szükséges adatot egy helyen tárolja, de amit az adatok tartalmaznak, az mindenhol megtalálható.

Végső soron az alkalmazottak, adattudósok, annotátorok, minőségbiztosítási szakemberek és egyebek fizetésére kell költenie. Emellett költeni fog a jegyzetkészítő eszközök előfizetésére és
CMS, CRM és egyéb infrastrukturális költségek karbantartása.

Ezenkívül az adatkészleteknek vannak torzítási és pontossági aggályai, amelyeket manuálisan kell rendeznie. Ha pedig lemorzsolódási problémái vannak az AI képzési adatokkal foglalkozó csapatában, akkor új tagok toborzására, a folyamatokhoz való orientálására, az eszközei használatára való betanításra és egyebekre kell költenie.

Többet fog költeni, mint amennyit hosszú távon végül keresne. Vannak annotációs költségek is. Egy adott időpontban a házon belüli adatokkal végzett munka teljes költsége:

Felmerült költség = Annotátorok száma * Annotátoronkénti költség + Platform költsége

Ha a mesterséges intelligencia képzési naptárát hónapokra ütemezi, képzelje el, milyen költségekkel járna rendszeresen. Tehát ez az ideális megoldás az adatgyűjtési problémákra, vagy van más alternatíva?

A teljes körű AI-adatgyűjtési szolgáltató előnyei

Létezik megbízható megoldás erre a problémára, és vannak jobb és olcsóbb módszerek az AI-modellek képzési adatainak beszerzésére. Képzési adatszolgáltatóknak vagy adatszolgáltatóknak hívjuk őket.

Olyan vállalkozásokról van szó, mint a Shaip, amelyek kiváló minőségű adatkészletek szállítására specializálódtak az Ön egyedi igényei és követelményei alapján. Megszüntetik az adatgyűjtés során felmerülő összes nehézséget, például a releváns adatkészletek beszerzését, tisztítását, összeállítását és megjegyzéseit, és így tovább, és lehetővé teszik, hogy csak az AI-modellek és algoritmusok optimalizálására összpontosítson. Az adatszolgáltatókkal való együttműködés révén azokra a dolgokra összpontosít, amelyek számítanak, és azokra, amelyek felett az Ön irányítása alatt áll.

Emellett kiküszöböli az adatkészletek ingyenes és belső erőforrásokból történő beszerzésével kapcsolatos gondokat is. Hogy jobban megértse a végpontok közötti adatszolgáltatók előnyeit, íme egy gyors lista:

  1. A képzési adatszolgáltatók teljesen tisztában vannak az Ön piaci szegmensével, felhasználási eseteivel, demográfiai adataival és más sajátosságokkal, hogy a legrelevánsabb adatokat lekérjék az Ön mesterséges intelligencia modelljéhez.
  2. Lehetőségük van különféle, az Ön projektje számára megfelelőnek ítélt adatkészletek forrására, például képek, videók, szövegek, hangfájlok vagy ezek mindegyike.
  3. Az adatszolgáltatók megtisztítják az adatokat, strukturálják, és olyan attribútumokkal és betekintésekkel látják el, amelyeket a gépeknek és az algoritmusoknak megtanulniuk és feldolgozniuk kell. Ez egy kézi erőfeszítés, amely aprólékos odafigyelést igényel a részletekre és az időre.
  4. A téma szakértői gondoskodnak a kulcsfontosságú információk megjegyzéseiről. Például, ha a termék használati esete az egészségügyi területen van, akkor nem kaphat megjegyzést egy nem egészségügyi szakembertől, és nem számíthat pontos eredményekre. Az adatszolgáltatóknál ez nem így van. KKV-kkal dolgoznak, és gondoskodnak arról, hogy a digitális képalkotási adatait az iparág veteránjai megfelelően feljegyezzék.
  5. Gondoskodnak az adatok azonosításának megszüntetéséről is, és betartják a HIPAA-t vagy más iparág-specifikus megfeleléseket és protokollokat, így Ön távol marad a jogi bonyodalmaktól.
  6. Az adatszolgáltatók fáradhatatlanul dolgoznak az adathalmazok torzításának kiküszöbölésén, így biztosítva, hogy Ön objektív eredményeket és következtetéseket lehessen levonni.
  7. Ezenkívül megkapja a résében lévő legfrissebb adatkészleteket is, így mesterséges intelligencia modelljeit az optimális hatékonyság érdekében optimalizálták.
  8. Ezenkívül könnyű velük dolgozni. Például az adatigények hirtelen változásait közölni lehet velük, és a naprakész igények alapján zökkenőmentesen szereznék be a megfelelő adatokat.

Ezekkel a tényezőkkel szilárd meggyőződésünk, hogy most már megértette, milyen költséghatékony és egyszerű az együttműködés a képzési adatszolgáltatókkal. Ennek megértése mellett nézzük meg, hogyan választhatja ki a legideálisabb adatszolgáltatót AI-projektjéhez.

Releváns adatkészletek beszerzése

Ismerje meg piacát, felhasználási eseteit, demográfiai adatait a legújabb adatkészletek forrásához, legyen szó képekről, videókról, szövegről vagy hangról.

Tisztítsa meg a releváns adatokat

Strukturálja és címkézze fel az adatokat olyan attribútumokkal és betekintésekkel, amelyeket a gépek és az algoritmusok megértenek.

Adat torzítás

Távolítsa el az adatkészletek torzítását, biztosítva objektív eredményeket és következtetéseket.

Adatok megjegyzése

A témával foglalkozó speciális területek szakértői gondoskodnak a kulcsfontosságú információk megjegyzéseiről.

Adatok törlése

A jogi bonyolultságok kiküszöbölése érdekében tartsa be a HIPAA-t, a GDPR-t vagy más iparág-specifikus megfeleléseket és protokollokat.

Hogyan válasszuk ki a megfelelő AI-adatgyűjtő vállalatot

A mesterséges intelligencia adatgyűjtő cégének kiválasztása nem olyan bonyolult vagy időigényes, mint az ingyenes forrásokból történő adatgyűjtés. Csak néhány egyszerű tényezőt kell figyelembe vennie, majd kezet kell fognia az együttműködéshez.

Amikor elkezd adatszolgáltatót keresni, feltételezzük, hogy követte és figyelembe vette mindazt, amit eddig megbeszéltünk. Íme azonban egy gyors összefoglaló:

  • Egy jól meghatározott használati esetet tart a szem előtt
  • Az Ön piaci szegmense és adatigényei egyértelműen meghatározottak
  • A költségvetés tervezése a helyén van
  • És van elképzelése a szükséges adatok mennyiségéről

Ha ezeket az elemeket bejelöli, akkor megértjük, hogyan kereshet ideális képzési adatszolgáltatót.

Ai adatgyűjtési szállító

A mintaadatkészlet lakmusz teszt

Hosszú távú szerződés aláírása előtt mindig érdemes részletesen megismerni az adatszolgáltatót. Kezdje tehát az együttműködést egy mintaadatkészlet követelményével, amelyért fizetnie kell.

Ez lehet egy kis mennyiségű adatkészlet annak felmérésére, hogy megértették-e az Ön követelményeit, megvan-e a megfelelő beszerzési stratégiákat, az együttműködési eljárásaikat, az átláthatóságot és egyebeket. Figyelembe véve azt a tényt, hogy ezen a ponton több szállítóval is kapcsolatba lépne, ezzel időt takaríthat meg a szolgáltató kiválasztásánál, és eldöntheti, hogy végül melyik felel meg jobban az Ön igényeinek.

Ellenőrizze, hogy megfelelnek-e

Alapértelmezés szerint a legtöbb képzési adatszolgáltató megfelel az összes szabályozási követelménynek és protokollnak. A biztonság kedvéért azonban érdeklődjön megfelelőségükről és irányelveikről, majd szűkítse a választékot.

Kérdezzen minőségbiztosítási folyamataikról

Az adatgyűjtés folyamata önmagában is szisztematikus és rétegzett. Van egy lineáris módszertan, amelyet alkalmaznak. Ha képet szeretne kapni működésükről, kérdezze meg minőségbiztosítási folyamataikat, és érdeklődjön, hogy az általuk forrásból származó és megjegyzésekkel ellátott adatkészletek átmennek-e minőségi ellenőrzéseken és auditokon. Ez ad egy
elképzelést arról, hogy az Ön által kapott végső szállítmányok gépkészek-e.

Az adattorzítás kezelése

Csak egy tájékozott ügyfél kérdezhet a képzési adatkészletek torzításáról. Amikor a képzési adatszolgáltatókkal beszél, beszéljen az adatok torzításáról, és arról, hogyan tudják kiküszöbölni a torzítást az általuk generált vagy beszerzett adatkészletekben. Józan ész ugyan, hogy nehéz teljesen kiküszöbölni az elfogultságot, mégis ismerheti a bevált gyakorlatokat, amelyeket az elfogultság visszaszorítására követnek.

Méretezhetőek?

Az egyszeri szállítás jó. A hosszú távú teljesítések jobbak. A legjobb együttműködések azonban azok, amelyek támogatják az Ön üzleti elképzeléseit, és egyidejűleg növelik a teljesítményüket
követelményeket.

Tehát beszélje meg, hogy a szállítók, akikkel beszél, növelhetik-e az adatmennyiséget, ha szükség van rá. És ha tehetik, hogyan változik ennek megfelelően az árazási stratégia.

Következtetés

Szeretne tudni egy parancsikont a legjobb AI képzési adatszolgáltató megtalálásához? Vegye fel velünk a kapcsolatot. Hagyja ki ezeket az unalmas folyamatokat, és dolgozzon velünk a legjobb minőségű és legpontosabb adatkészletekért AI-modelljeihez.

Az összes eddig megbeszélt négyzetet bejelöljük. Úttörő szerepet vállalva ezen a téren, tudjuk, mi kell egy AI-modell felépítéséhez és méretezéséhez, és hogy az adatok állnak mindennek a középpontjában.

Úgy gondoljuk, hogy a Vevői Útmutató több szempontból is kiterjedt és találékony volt. Az AI-oktatás bonyolult, de ezekkel a javaslatokkal és ajánlásokkal kevésbé fárasztó. Végső soron az Ön terméke az egyetlen olyan elem, amely végső soron hasznot húz ebből az egészből.

Nem ért egyet?

Beszéljünk

  • A regisztrációval egyetértek Shaippal Adatkezelési tájékoztató és a Általános Szerződési Feltételek és hozzájárulok a Shaip B2B marketingkommunikációjának fogadásához.